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Abstract 

Conventional safety models rely on the assumption of independence of crash data, which 

is frequently violated. This study develops a novel multivariate conditional autoregressive 

(MVCAR) model to account for the spatial autocorrelation of neighboring sites and the 

inherent correlation across different crash types. Manhattan, which is the most densely 

populated urban area of New York City, is used as the study area. Census tracts are used 

as the basic geographic units to capture crash, transportation, land use, and demo-economic 

data. The specification of the proposed multivariate model allows for jointly modeling 

counts of various crash types that are classified according to injury severity. Results of 

Moran’s I tests show the ability of the MVCAR model to capture the multivariate spatial 

autocorrelation among different crash types. The MVCAR model is found to outperform 

the others by presenting the lowest deviance information criterion (DIC) value. It is also 

found that the unobserved heterogeneity was mostly attributed to spatial factors instead of 

non-spatial ones and there is a strong shared geographical pattern of risk among different 

crash types. 
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1. Introduction 

 

Crash frequency models, which are commonly developed to correlate traffic, geometric, 

and environmental characteristics with crash occurrence, are helpful in investigating risk 

factors, conducting before-after evaluation, and identifying crash hotspots. Poisson models 

(Jones et al. 1991, Miaou and Lum 1993), Poisson-Gamma models (Poch and Mannering 

1996, Abdel-Aty and Radwan 2000), and Poisson-lognormal models (Lord and Miranda-

Moreno 2008, El-Basyouny and Sayed 2009a) are widely used in crash frequency modeling. 

Those crash frequency models rely on the assumption of independence of observed crashes. 

However, the independence assumption of different crashes is frequently violated. Firstly, 

spatial autocorrelation can exist in neighboring sites; namely, that observed or unobserved 

risk factors affect the likelihood of crashes at one site and its surrounding sites. For instance, 

crashes occurred at the downstream of a highway may lead to rear-end secondary crashes 

at the upstream due to the disrupted traffic (Yang et al. 2014; Yang et al. 2018). Also, 

traffic congestion in the central areas can result in traffic shifting to surrounding areas and 

thus change the likelihood of crashes not only in the central areas but also in the 

surrounding areas. Secondly, when modeling crashes of different types, there can be 

inherent correlation across crash types due to the existence of unobserved risk factors that 

are jointly associated with the frequencies of various crash types. For instance, poor road 

lighting would increase non-injury crashes as well as injury crashes, but data availability 

may limit the inclusion of road lighting as an explanatory variable and thus its effect on 

safety cannot be accounted for. Modeling crash frequencies without properly considering 

the intrinsic dependence of crash data can lead to biased inferences.  

 

The main objective of this study is to develop a crash frequency model with multivariate 

responses that can jointly account for the spatial autocorrelation and inherent correlation 

among crash types. Manhattan, which is the most densely populated urban area of New 

York City, is used as the study area. This paper starts with introduction and literature 

review. It is followed by the section of data preparation and methodology where a novel 

multivariate spatial model is introduced to model multiple crash types classified by injury 

severity. Detailed discussion on addressing multivariate spatial autocorrelation is also 

presented. This paper ends with the summary and conclusions.  

 

2. Literature review 
 

To account for spatial autocorrelation of crash observations, generalized estimating 

equations (GEEs) have been frequently sought (Abdel-Aty and Wang 2006). However, 

GEEs have the constraint of requiring the same correlation matrix for all groups (Xie et al. 

2014). Alternatively, simultaneous autoregressive (SAR) models1 developed by Whittle 

(1954) and conditional autoregressive (CAR) models by Besag (1974) have drawn 

increasing attention due to their flexibility in accounting for the spatial autocorrelation by 

specifying details of correlation matrices. The SAR models have two typical spatial 

specifications: 1) the spatial error specification that assumes the spatial autocorrelation is 

only due to spatial error correlation effects (unobserved risk factors at one site can affect 

the crash observations of itself and its neighboring sites), and 2) the spatial lag specification 

                                                 
1 Also referred to as spatial autoregressive models in literature.  
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that allows spatial autocorrelation through both spatial error correlation effects and spatial 

spillover effects  (observed risk factors at one site can affect the crash observations of itself 

and its neighboring sites)  (Narayanamoorthy et al. 2013, Xie et al. 2014). SAR models 

have been applied by transportation researchers to anticipate land-use change (Wang et al. 

2014b), to estimate incident durations (Xie et al. 2015a) and to conduct safety analysis 

(Quddus 2008, Castro et al. 2012, Narayanamoorthy et al. 2013). The SAR models are 

generally estimated using the maximum likelihood method (Xie et al. 2015a) and the 

composite marginal likelihood (Castro et al. 2012, Narayanamoorthy et al. 2013). Likewise, 

the CAR models are mostly developed in the full Bayesian framework where the magnitude 

of correlation between observations can be specified with CAR priors. It should be noted 

that CAR models cannot accommodate spatial spillover effects but only spatial error 

correlation effects (Narayanamoorthy et al. 2013). CAR models have been used to analyze 

safety performance of various entities such as intersections (Xie et al. 2014), arterials (El-

Basyouny and Sayed 2009b), and census block groups (Saha et al. 2018). The CAR models 

are more commonly used to accommodate spatially correlated count data, whereas it is 

challenging to use the SAR models in a count-response setting, especially with large 

datasets (Wang and Kockelman 2013). Moreover, the Bayesian framework of the CAR 

model enables a flexible selection of crash count distributions and can accommodate 

complicated model structures (Lan et al. 2009, Xie et al. 2013). Therefore, the CAR 

specification is adopted to analyze crash count data in this study.  

 

When modeling crash frequencies of different types, it is likely that unobserved risk factors 

can affect all crash types simultaneously at each site (Lord and Mannering 2010). 

Multivariate models (Ma and Kockelman 2006, Park and Lord 2007, Xie et al. 2015b) can 

address correlation among different crash types by incorporating shared error terms. Xie et 

al. (2015b) developed a multivariate model in Bayesian framework and showed the 

flexibility to specify the Bayesian multivariate model for accommodating complicated data 

structure. Copula-based approaches (Nashad et al. 2016) and fractional split modeling 

approaches (Yasmin et al. 2016) have also been used in the literature to account for 

correlation across crash types. Multivariate conditional autoregressive (MVCAR) models  

have been proposed (Song et al. 2006, Wang and Kockelman 2013, Barua et al. 2014, 

Cheng et al. 2018) to jointly account for the spatial autocorrelation among neighboring 

sites and correlation among crash types, by including a multivariate conditional 

autoregressive effect term. Barua et al. (2016) extended the MVCAR model by allowing 

all the regression coefficients to vary randomly across sites and thus potential spatial 

heterogeneity can be addressed. The present study exploits the MVCAR approach to model 

crash counts by injury severity using data from Manhattan, New York. It is worth to 

mention that we also attempted to develop a MVCAR model with random parameters 

(similar to the approach by Barua et al. (2016)), allowing a selection of regression 

coefficients to vary randomly. However, this model didn’t yield distinct improvement 

compared with the MVCAR model and thus was not reported in this study. 
 

3. Data preparation 

 

The census tracts (n=282) of Manhattan were used as the basic geographical units for data 

preparation and safety modeling. The census tracts could be easily connected to the demo-
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economic data provided by the U.S. Census Bureau. Crash, transportation, and land use 

data were also collected for each census tract.  

 

Three-year crash record data (05/01/2008-04/30/2011) were obtained from the New York 

State Department of Transportation (NYSDOT2). Crashes were classified into five types 

by injury severity, i.e., property-damage-only, possible injury, non-incapacitating injury, 

incapacitating injury, and fatality. Considering the similarity of crash injuries, these five 

crash types were combined into three categories for model development: (1) property-

damage-only (PDO); (2) minor injury (MI) including possible injury and non-

incapacitating injury crashes; and (3) serious injury and fatality (SIF) including 

incapacitating injury and fatality crashes. The crash counts by injury severity for the 

analyzed census tracts are shown in Figure 1. We can see from Figure 1 that the zones with 

similar colors tend to be close to each other, which shows the spatial clustering of each 

individual crash type. Additionally, it is found that the zones with higher PDO frequencies 

are likely to be close to zones with more MI and SIF crashes and it implies a potential 

multivariate spatial correlation of different crash types. 

 

 
Figure 1 Counts of PDO, MI and SIF crashes (05/01/2008-04/30/2011). 

 

Traffic AADT data were obtained from the Short Count Program (SCP) of NYSDOT3. In 

the SCP, approximately 12,000 statewide counts of 2-7 days’ duration were taken every 

year and were used to calculate AADT after undergoing quality control procedures. 

Vehicle miles traveled (VMT) was computed for each census tract based on the AADT 

data. The output of the Best Practice Model (BPM) developed by the New York 

                                                 
2 Source: http://www.dmv.ny.gov/stats.htm 
3 Source: https://gis.ny.gov/gisdata 

http://www.dmv.ny.gov/stats.htm
https://gis.ny.gov/gisdata
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Metropolitan Transportation Council (NYMTC4) was used to estimate the ratio of truck 

flow to total flow for each census tract. The geographic information system (GIS) data of 

bus and subway stations were obtained from the Metropolitan Transportation Authority 

(MTA5). The number of bus and subway stations were calculated for each census tract 

using spatial tools of the software ArcGIS. The intersection number, length of different 

road types (freeway, avenue, and street), and road density were computed based on the 

road network of the regional planning model.  

 

The land use data were obtained from the New York City Department of City Planning 

(NYCDCP6). The main zoning categories of interest include commercial, residential, 

mixed and park. The areas by zoning category were obtained for each census tract using a 

Visual Basic for Applications (VBA) program developed in ArcGIS and then the ratio of 

each zoning category to the total zone area was computed.  

 

The demo-economic data for the studied census tracts were obtained from the 2011 census 

data provided by the U.S. Census Bureau7. The main categories of demo-economic data 

include demographic (e.g., total population, population under 14, and population over 65), 

economic (e.g., unemployment rate and median income), housing (e.g., median value and 

household average size), and commuting (e.g., the ratios of commuters by driving alone, 

carpooling, public transit, and walking) data. The description and descriptive statistics of 

crash, transportation, land use and demo-economic data are summarized in Table 1. 

  

                                                 
4 Source: http://www.nymtc.org/project/bpm/bpmindex.html  
5 Source: http://web.mta.info/developers/download.html  
6 Source: http://www.nyc.gov/html/dcp/html/bytes/dwn_pluto_mappluto.shtml  
7 Source: http://factfinder.census.gov  

http://www.nymtc.org/project/bpm/bpmindex.html
http://web.mta.info/developers/download.html
http://www.nyc.gov/html/dcp/html/bytes/dwn_pluto_mappluto.shtml
http://factfinder.census.gov/
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Table 1  

Description and descriptive statistics of data (n=282 census tracts). 

Variable Description Mean 
Standard  

Deviation 

Crash    

PDO Count of property-damage-only crashes  50.95 46.54 

MI Count of possible injury and non-incapacitating injury crashes 74.92 49.11 

SIF Count of incapacitating injury and fatality crashes 7.08 5.21 

Transportation    

LogVMT The logarithm of annual average daily vehicle miles traveled (veh.mile)  9.56 1.69 

Truck ratio The average ratio of truck flow to total flow  0.06 0.04 

Freeway length Total length of freeway segments (mile) 0.14 0.28 

Avenue length Total length of avenues (mile) 0.39 0.27 

Street length Total length of streets (mile) 0.27 0.34 

Road density Ratio of total road length to census tract area (mile/mile2) 1.83 0.85 

Intersection number Count of intersections in each census tract 11.86 6.90 

Subway station number Count of subway stations in each census tract 0.52 0.92 

Bus stop number Count of bus stops in each census tract 8.09 5.92 

Land use    

Commercial ratio The ratio of commercial zone area to the whole area 0.30 0.33 

Residential ratio The ratio of residential zone area to the whole area 0.56 0.35 

Mixed ratio The ratio of mixed zone area to the whole area 0.07 0.17 

Park ratio The ratio of park area to the whole area 0.06 0.14 

Demo-economic    

Population Total population (103) 5.56 3.14 

Population under 14 Population under 14 years (103) 0.70 0.54 

Population over 65 Population 65 years and over (103) 0.74 0.56 

Median age Median age of population 37.36 7.55 

Median income Median income per household (103 $) 76.41 44.49 

Median housing value Median value of housing (103 $) 615.61 235.36 

Household size Number of people per household 2.08 0.57 

Unemployment rate Share of the labor force that is unemployed 0.09 0.05 

Drive alone ratio The ratio of commuters by driving alone 0.07 0.04 

Carpool ratio The ratio of commuters by carpooling 0.02 0.02 

Public transit ratio The ratio of commuters by public transit 0.56 0.17 

Walk ratio The ratio of commuters by walking 0.22 0.14 
 

 

4. Methodology 

 

4.1 Model specification 

 

Model 1. Poisson-Gamma (PG) model 

Let 
k

iy  denote the count of thk  type crashes at thi  sites ( 1,2,...,i n= , n  is the total 

number of sites; 1,2,...,k K= ; and K  is the total number of crash types) during the study 

period. It is commonly assumed that 
k

iy  follows Poisson distribution with the mean 
k

i . 

The probability of observing 
k

iy  crashes at a site can be given by: 
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To specify the Poisson parameter 
k

i , explanatory variables 
k

piX  ( 1,..., kp P=  , where, kP  

is the total number of explanatory variables for thk  crash type) are incorporated into the 

model:  
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where 
0

k  and 
k

p  are the regression coefficients to be estimated. Error term 
k

i  is 

included to address the over-dispersion issue, with exp( )k

i  assumed to be gamma-

distributed with mean 1 and variance 
2

k . Equations (1) and (2) constitute K  independent 

Poisson-Gamma models that serves as a basis for modeling crash frequency.   

 

Model 2. Univariate conditional autoregressive (UCAR) model 

To capture the spatial autocorrelation of specific crash types, univariate conditional 

autoregressive (UCAR) model is given as follows:  
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1
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k k k k k k
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p
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where, 
k

iS  is a CAR effect term to account for the spatial autocorrelation of thk  crash type. 

It should be noted that the CAR effects for different crash types are assumed to be 

independent from each other. An intrinsic version of the CAR effect proposed by Besag et 

al. (1991) is used in this study. The full conditional distribution of 
k

iS  given 
k

iS−  turns out 

to be a normal distribution with mean 
ijw

w

k

j

j i i
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where, 
k

iS− is the set of  
k

jS  for any j i . wij  indicates the spatial autocorrelation between 

sites i  and j , with w 1ij =  if sites i  and j  are adjacent, and w 0ij =  otherwise. wi+  is 

the aggregation of weights for site i , with 
1

w
n

ij

j

i w
=

+ = . 
2

Sk is a parameter controlling 

the variance for spatial autocorrelation of thk  crash type. During the Bayesian procedure, 

equation (4) is used to assign CAR priors to 
k

iS  for thk  crash type independently.  

 

Model 3. Multivariate conditional autoregressive (MVCAR) model 

To account for the spatial autocorrelation of neighboring sites and inherent correlation 

among different crash types simultaneously, a K-dimensional multivariate autoregressive 

(MVCAR) model is proposed: 
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where, kiS  is a multivariate CAR effect term. The difference between the multivariate CAR 

effect kiS  and the univariate CAR effect 
k

iS  in equation (3) is that kiS  accounts for the 

spatial correlation among different crash types. The full conditional distribution of 
'

1 2( , ,..., )i i KiS S S=iS  follows a K-dimensional multivariate normal distribution (Thomas 

et al. 2004): 
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Diagonal elements of Ω  (i.e., 2 2 2

11 22, , ...,S S SKK   ) indicates the conditional variance of the 

spatial effects of individual crash types and the off-diagonal elements (i.e., 
2 2 2

12 13 1, , ...,S S SKK   −
) represent the conditional with-in site covariance of the spatial effects 

of different crash types (Thomas et al. 2004).  

 

4.2 Bayesian approach 

 

4.2.1 Estimation of Bayesian models 

All the aforementioned models are estimated in the full Bayesian framework. Bayesian 

method combines prior distributions with a likelihood function obtained to create posterior 

distributions as estimates. The theoretical framework for Bayesian inference can be 

expressed as: 

 p( | ) ( | ) ( )L θ y y θ θ   (8) 

where, y  is the vector of observed data; θ is the vector of parameters required for the 

likelihood function (regarding the MVCAR model, θ  contains 0

k , 
k

p , 
2

k , i
S ,Ω ); 

p( | )θ y  is the posterior distribution of θ  given y ; ( | )L y θ  is the likelihood function 

(equations (1) and (5) construct the likelihood function of MVCAR model); and ( ) θ  is 

the prior distribution of θ . Bayesian inference generally is performed using Markov Chain 

Monte Carlo (MCMC) algorithm (Gilks et al. 1998). The primary technique of MCMC is 

Gibbs sampling (Geman and Geman 1984), each iteration of which draws a new value for 

each unobserved stochastic node from its full conditional distribution given the current 

values of all the other quantities in the model (Lunn et al. 2000). The WinBUGS statistical 
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software package was used to provide a computing approach for the calibration of Bayesian 

models using MCMC simulation (Spiegelhalter et al. 2002).  

 

The priors of the univariate and multivariate CAR effect terms k

iS  and i
S  were generated 

from equations (4) and (6). Without credible prior information, uninformative priors were 

assumed for the other parameters. The chosen prior distributions are consistent to the 

previous studies such as El-Basyouny and Sayed (2009a), Guo et al. (2010), and Wang et 

al. (2014a). All regression coefficients were assumed to follow the Gaussian distribution 

(0,105). The variance of the univariate CAR distribution 2

Sk  were assumed to follow the 

Inverse-Gamma distribution (10-3, 10-3). The logarithm of the variance of the Poisson-

Gamma error term (
2ln k ) was assumed to follow the Gaussian distribution (0, 103). The 

variance-covariance matrix for correlation Ω  was assumed to follow a Wishart 

distribution (Thomas et al. 2004).  

 

4.2.2 Autocorrelation and convergence of MCMC samples  

Autocorrelation and convergence of MCMC samples were examined to make reliable 

statistical inferences. We used four variables (i.e, logVMT, avenue length, residential ratio 

and walk ratio) of the proposed MVCAR model as demonstration examples. The 

autocorrelation functions (ACFs) of these four variables are presented in Figure 2. It was 

found that the autocorrelations for each MCMC chain were near zero when the lag was 

higher than or equal to one. It indicates that the MCMC samples could be regarded as 

independent and representative. Thus, technical approaches like thinning (Link and Eaton 

2012) to reduce autocorrelation are not necessary in this case.  

    

We used relative standard deviation (RSD) of MCMC samples as an indicator of 

convergence for a single MCMC chain. RSD was defined as the standard deviation divided 

by the absolute value of the mean for MCMC samples. The plots of RSD are presented in 

Figure 3. It was found that the after the initial fluctuation, overall tendency of RSD was 

decreasing as the iteration number increased. RSD plateaued after 60,000 iterations, which 

indicated the convergence of MCMC chains. Additionally, the potential scale reduction 

factor (PSRF) proposed by (Brooks and Gelman 1998) was used to assess the convergence 

of multiple chains. The PSRF was obtained by dividing mixture variance by the average 

within-chain variance for each parameter. Convergence was assumed to occur when PSRF 

is less than 1.2. Figure 4 presents the median and 97.5th percentile of PSRF during the 

MCMC process for the selected variables. All the estimates were less than 1.2 after the first 

60,000 iterations. Considering convergence and time of updating, two MCMC chains of 

100,000 iterations were run, and the first 60,000 samples were discarded as burn-in.  
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Figure 2 Autocorrelation functions (ACFs) for the selected variables.  

 

 
Figure 3 Relative standard deviation (RSD) for the selected variables.  
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Figure 4 Convergence diagnostics using potential scale reduction factor (PSRF) for the 

selected variables.  

 

4.2.3 Assessment of Bayesian models 

 

The deviance information criterion (DIC) widely used as a Bayesian measure of model 

fitting and complexity (Spiegelhalter et al. 2002) is used for model assessment. Specifically, 

DIC is calculated as follows: 

 ( ) DDIC D p= +θ   (9) 

( )D θ  is the Bayesian deviance of the estimated parameter θ , ( ) 2log( ( | ))D L C= − +θ y θ , 

where C  is a constant than cancels out in all calculations that compare different models. 

( )D θ  denotes the posterior mean of ( )D θ  and can be used to indicate how well the model 

fits the data. Dp  defines the effective number of parameters and can be taken as a measure 

of model complexity. A DIC difference of 5 or greater suggests that the model with a 

smaller DIC should be favored.  

 

5. Modeling results 

 

The PG, UCAR, and MVCAR models specified in the methodology section were 

developed in the Bayesian framework. A stepwise Akaike information criterion (AIC) 

method (Yamashita et al. 2007) was used for variable section. The variables kept by the 

stepwise AIC method were further examined according to their significance and 

contribution to the goodness of fit. Different explanatory variables were selected to model 

the PDO, MI, and SIF crashes. Variance inflation factors (VIFs) were used to diagnose 
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multicollinearity in each model. A VIF greater than 5 indicates the existence of 

multicollinearity problem (O’brien 2007). As presented in Table 2, all the VIFs of 

explanatory variables are far less than 5, and it indicates that no multicollinearity is detected. 

 

Table 2  

Detection of multicollinearity using variance inflation factors (VIF). 

Variables 
Variance Inflation Factors (VIF) 

PDO Crash Model MI Crash Model SIF Crash Model 

Transportation    

LogVMT 1.607 1.380 1.413 

Truck ratio - 1.267 1.116 

Road density 1.664 - 1.649 

Avenue length 1.088 1.111 1.112 

Street length - 1.731 - 

Intersection number 1.323 - - 

Land use 
   

Commercial ratio 1.575 - - 

Residential ratio - 1.945 1.857 

Mixed ratio 1.135 - - 

Park ratio - 1.397 - 

Demo-economic 
   

Population 1.372 - - 

Population under 14 - 1.555 1.629 

Median income - 1.355 1.320 

Public transit ratio 1.418 - - 

Walk ratio - 1.608 1.406 

 

The summary of DIC statistic is presented in Table 3. The DIC value of the MVCAR model 

(5644) is 55 and 41 less than that of the PG model (5699) and the UCAR model (5685), 

respectively. This suggests that the MVCAR model has the best performance. Compared 

to the PG model, the UCAR model that accounts for the spatial autocorrelation of crash 

data by including the CAR effect terms can be regarded as superior since it reduces DIC 

value by 14 (from 5699 for the PG model to 5685 for the UCAR model). In contrast with 

the UCAR model, the MVCAR model is further improved by including a multivariate CAR 

effect term to jointly address the spatial autocorrelation and the inherent correlation of 

different crash types.  

 

Table 3  

Summary of DIC values. 

Model DIC 

Model 1. Poisson-Gamma (PG) model 5699 

Model 2. Univariate conditional autoregressive (UCAR) model 5685 

Model 3. Multivariate conditional autoregressive (MVCAR) model 5644 
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Regarding the best performance of the MVCAR model, its Bayesian posterior estimates 

are used for variable interpretation, as presented in Table 4. The 95% Bayesian Credible 

Interval (95% BCI) is used to examine the significance of explanatory variables. Estimates 

can be regarded as significant at the 95% level if the BCIs do not cover 0 and vice versa 

(Gelman 2004). Except road density and median income in the SIF crash model, all the 

other explanatory variables included in the MVCAR model are found to be statistically 

significant.   

 

Table 4 

Modeling results of MVCAR model. 

Variables 

PDO Crash Model MI Crash Model SIF Crash Model 

Mean 95% BCI Mean 95% BCI Mean 95% BCI 

Intercept 0.422 (0.056, 0.778) 1.997 (1.639, 2.343) -0.584 (-1.142, 0.137) 

Transportation       
LogVMT 0.272 (0.234, 0.307) 0.182 (0.149, 0.217) 0.180 (0.118, 0.231) 

Truck ratio - - 1.541 (0.549, 2.468) 2.519 (0.461, 4.491) 

Road density 0.098 (0.035, 0.160) - - 0.038 (-0.046, 0.121) 

Avenue length 0.399 (0.152, 0.605) 1.023 (0.851, 1.187) 1.051 (0.795, 1.297) 

Street length - - 0.191 (0.089, 0.313) - - 

Intersection number 0.020 (0.012, 0.028) - - - - 

Land use       
Commercial ratio 0.446 (0.250, 0.666) - - - - 

Residential ratio - - -0.622 (-0.839, -0.461) -0.565 (-0.843, -0.301) 

Mixed ratio 0.540 (0.263, 0.848) - - - - 

Park ratio - - -0.467 (-0.776, -0.178) - - 

Demo-economic       
Population 0.038 (0.020, 0.053) - - - - 

Population under 14 - - 0.262 (0.169, 0.350) 0.262 (0.112, 0.402) 

Median income - - -0.001 (-0.002, 0.000) -0.001 (-0.003, 0.001) 

Public transit ratio -0.707 (-1.016, -0.437) - - - - 

Walk ratio - - 0.433 (0.170, 0.693) 0.745 (0.283, 1.184) 

Dispersion 
k  0.168 (0.105, 0.222) 0.023 (0.000, 0.063) 0.030 (0.000, 0.090) 

 

Vehicle miles traveled (VMT) is found to be positively related to the crash counts of all 

three severity levels. This finding is consistent with numerous previous studies (Abdel-Aty 

et al. 2013, Wang and Kockelman 2013, Lee et al. 2015, Xie et al. 2017). The explanation 

is straight forward that vehicles traveled more miles are exposed to more crash risk. For 

this log-transformed variable VMT, its coefficients can be interpreted as: 1% increase in 

VMT is expected to raise the PDO, MI, and SIF crash counts by 0.272%, 0.182% and 

0.180%, respectively. Additionally, previous studies (Ladrón de Guevara et al. 2004, 

Cottrill and Thakuriah 2010, Ukkusuri et al. 2011, Wang and Kockelman 2013, Lee et al. 

2015) show the positive impact of road length and density on crash occurrence. In this 

study, avenue length is found to have positive impacts on PDO, MI, and SIF crash counts 

and one-unit increase in street length is predicted to result in 21.0 % (e0.191-1) more MI 

crashes. We also find that the increase of road density would lead to more PDO and SIF 

crashes and the increase of the intersection number could raise the likelihood of PDO 

crashes. A possible reason is that higher road density and more intersections are 

accompanied by shorter intersection distances, and it will limit the gap for making safe 

lane changes and result in more traffic conflicts (Xie et al. 2013). Another predictive 
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variable is the truck ratio and it shows that a higher truck ratio promotes the likelihood of 

MI and SIF crashes, which is consistent with the findings in Martin (2002) and Xie et al. 

(2017). It is intuitive that trucks can disturb the traffic flow and cause more severe crashes 

because of their heavy weight.  

 

Previous studies (Wier et al. 2009, Pulugurtha and Sambhara 2011, Ukkusuri et al. 2011, 

Xie et al. 2017) show that land use patterns could influence the occurrence of crashes. In 

Table 4, the results show that both the ratio of commercial area and the ratio of mixed zone 

area have positive effect on PDO crash count. A possible reason is that more traffic 

attracted to the commercial areas imposes more exposure on crashes. Wang and 

Kockelman (2013) also found that areas with mixed land use patterns were associated with 

higher crash frequencies. This finding can also be attributed to the mixed traffic in those 

areas, which is composed of pedestrians, cars, buses, and delivery trucks. One the contrary, 

the ratio of residential area has negative effect on MI and SIF crash counts and the ratio of 

park area has negative effect on MI crash count. A possible reason could be that both the 

residential and park areas have relatively lower traffic and smaller portions of heavy 

vehicles compared with the commercial and mixed areas.  

 

Previous studies found the relationship between crash occurrence and demo-economic 

features including population (Ladrón de Guevara et al. 2004, Wier et al. 2009, Pulugurtha 

and Sambhara 2011, Ukkusuri et al. 2011, Lee et al. 2015), age composition (Ladrón de 

Guevara et al. 2004, Wier et al. 2009, Lee et al. 2015) and income (Cottrill and Thakuriah 

2010, Lee et al. 2015). In Table 4, population is positively associated with PDO crashes, 

and in the census tracts with more population under 14 years old, the likelihoods of MI and 

SIF crashes are higher. Another finding is that the census tracts with high median income 

are associated with lower MI and SIF crash counts. In addition, it is an inspiring result that 

the ratio of commuters by public transit has a negative effect on SIF crash count. It is 

possible that if more commuters take public transit and fewer people drive, it could reduce 

the overall exposure to crashes. Census tracts with higher ratios of commuters by walking 

are associated with higher MI and SIF crashes because pedestrians are vulnerable road 

users and are more likely to be injured in crashes. 

 

6. Discussion on spatial autocorrelation 

This section first introduces Moran’s I statistics to assess the significance of spatial 

autocorrelation of variables of interest. Then the ability of the PG, UCAR, and MVCAR 

models to adjust for spatial autocorrelation is examined by conducting Moran’s I tests on 

their residuals.  

 

6.1 Moran’s I tests 

To assess the spatial autocorrelation of variables in a quantitative way, global univariate 

and bivariate Moran’s I statistics are computed. The univariate Moran’s I is defined as 

(Moran 1948): 
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where, n  is the total number of spatial units indexed by i  and j ; z  is the variable of 

interest; z  is the mean of  z ; 
ijw  represents the  spatial weight between spatial units i  

and j , with w 1ij =  if units i  and j  are adjacent, and w 0ij =  otherwise; and 0S  is the 
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As a generalization of univariate Moran’s I, bivariate Moran’s I can be used to measure the 

spatial correlation of two variables (Anselin et al. 2002). It indicates whether a variable is 

spatially correlated with the other variable. Bivariate Moran’s I for two different variables 

is given by: 
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where, 
Az  and 

Bz are the two variables of interest; and 
Az  and 

Bz  are the means of 
Az  

and 
Bz . Anselin et al. (2006) suggested a random permutation test to assess the 

significance of Moran’s I using pseudo p-value. In the permutation test, the variables of 

interest were randomly reallocated to sites and Moran’s statistics were computed 

repeatedly. The pseudo p-value is given by equation (12): 
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where, S  is the total number of permutations; and M is the number of instances with 

Moran’s I equal to or greater than that obtained from the observed data. If pseudo p-value 

is less than 0.05, it suggests significant spatial correlation of observations.  

 

6.2 Addressing spatial autocorrelation 

GeoDa (Anselin 2003) was used to compute the univariate Moran’s I  statistics for PDO, 

MI and SIF crashes separately and bivariate Moran’s I  statistics for each pair of them. A 

total of 9,999 permutations were performed for each test. The outcomes of Moran’s I 

statistics are presented in Table 5 (a). All the pseudo p-values are found to be far less than 

0.05. The results not only confirm the spatial autocorrelation of each crash type at adjacent 

sites, but also indicate the multivariate spatial autocorrelation among different crash types. 

Ignoring the multivariate spatial autocorrelation of crash observations is likely to cause 

biased estimates and unreliable statistical inferences.  
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It is therefore essential to adjust for the spatial autocorrelation when modelling crash counts 

by injury severity to achieve more precise estimation. Univariate and bivariate Moran’s I 

tests were conducted on the residuals of the PG, UCAR and MVCAR models. If the 

outcome of univariate Moran’s I tests is insignificant, it indicates that there is no spatial 

clustering of overestimation or underestimation and that the corresponding model can 

address the univariate spatial autocorrelation properly. Similarly, if the outcome of 

bivariate Moran’s I tests is insignificant, it indicates that the corresponding model can 

capture the multivariate spatial autocorrelation. Univariate and bivariate Moran’s I tests 

(9,999 permutations for each test) were performed to quantify the spatial autocorrelation 

of residuals of a single crash type and each pair of them. The outcomes of the Moran’s I 

tests are presented in Table 5 (b)-(d). As shown in Table 5 (b), all the Moran’s I statistics 

of the residuals of the PG model were found to be significant, and it affirmed the fact that 

the PG model could not address the spatial autocorrelation. As shown in Table 5 (c), the 

UCAR model was able to deal with univariate spatial autocorrelation by presenting 

insignificant outcomes in univariate Moran’s I tests, whereas failed to deal with 

multivariate spatial autocorrelation by showing two significant outcomes (PDO vs. SIF and 

MI vs. SIF) in bivariate Moran’s I tests. The result indicates that although UCAR could 

handle the spatial effect of each crash type separately, it tends to overestimate (or 

underestimate) one crash type for one tract and meanwhile overestimate (or underestimate) 

the other crash types for the neighbouring tracts. Regarding the MVCAR model, as shown 

in Table 5 (d), all the pseudo p-values of the Moran’s statistics were found to be greater 

than 0.05, indicating insignificant spatial autocorrelation of crash residuals. This finding 

shows that the MVCAR model accounted for not only the spatial autocorrelation of each 

individual crash type but also the multivariate spatial autocorrelation among different crash 

types. There is no spatial clustering of overestimation or underestimation of crashes by 

type.   

 

Table 5  

Summary of Moran’s I tests on (a) crash counts, (b) residuals of the PG model, (c) 

residuals of the UCAR model, and (d) residuals of the MVCAR models. 

 

(a) 

 I Pseudo p-value 

Univariate Moran's I   

PDO 0.3520 0.0001 

MI 0.1895 0.0001 

SIF 0.1264 0.0005 

Bivariate Moran's I   

PDO vs MI 0.2050 0.0001 

PDO vs SIF 0.1328 0.0002 

MI vs SIF 0.1367 0.0001 
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(b) 

 I Pseudo p-value 

Univariate Moran's I   

PDO 0.2423 0.0001 

MI 0.1508 0.0003 

SIF 0.1778 0.0001 

Bivariate Moran's I   

PDO vs MI 0.1123 0.0004 

PDO vs SIF 0.0570 0.0298 

MI vs SIF 0.1370 0.0002 

 

(c) 

 I Pseudo p-value 

Univariate Moran's I   

PDO -0.0630 0.0514 

MI -0.0334 0.1908 

SIF -0.0497 0.1281 

Bivariate Moran's I   

PDO vs MI -0.0359 0.1239 

PDO vs SIF -0.0585 0.0219 

MI vs SIF -0.0476 0.0481 

 

(d) 

 I Pseudo p-value 

Univariate Moran's I   

PDO -0.0327 0.2315 

MI -0.0354 0.2132 

SIF -0.0366 0.2064 

Bivariate Moran's I   

PDO vs MI 0.0221 0.2662 

PDO vs SIF -0.0234 0.2079 

MI vs SIF 0.0343 0.1456 

 
 

The results of the Moran’s I tests in Table 5 confirm the presence of multivariate spatial 

autocorrelation of crash data and that it could be properly addressed by the proposed 

MVCAR model. Table 6 presents the estimates of the conditional standard deviation (SD) 

of the spatial effects of each individual crash type and the within-site conditional 

correlation of the spatial effects of different crash types in the MVCAR model. All the 

estimates in Table 6 were found to be statistically significant (95% BCIs do not cover 0) 

and the results provided further evidence for the multivariate spatial autocorrelation of 

different crash types.  

 

The conditional SDs of the spatial effects of PDO crashes are 0.858, 0.921 and 0.998 and 

thus, one SD higher in spatial effect indicates 136% (e0.858-1), 151% (e0.921-1), and 171% 
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(e0.998-1) higher expectation in PDO, MI, and SIF crash counts, respectively. The great 

variation in crash occurrence could be caused by unobserved spatial factors such as the 

road geometric design, traffic control and enforcement that vary largely among downtown, 

midtown and uptown in Manhattan. Though the crash counts of PDO, MI, and SIF differ 

greatly in magnitude, the SDs of the spatial effects by crash type are of similar levels, 

because the spatial effects influence the crash counts proportionally. It is an expected 

outcome that the spatial effect of SIF crashes has a slightly higher SD than the other two 

crash types, because generally SIF crashes are rarer and more random and factors 

contributing to severe crashes such as speeding and non-use of seat belts (Zhang et al. 2000, 

Xie et al. 2018) are not included for modeling in this study. Moreover, the SDs of the 

spatial effects are found distinctly greater than those of the dispersion effects (0.168 for the 

PDO crashes, 0.023 for the MI crashes, and 0.030 for the SIF crashes) caused by non-

spatial factors as presented in Table 4, which indicates that the unobserved heterogeneity 

is mostly attributed to spatial factors rather than non-spatial ones. Regarding the correlation 

between crash types, all the within-site conditional correlation coefficients of spatial effects 

are positive and greater than 0.7, suggesting a strong shared geographical pattern of risk 

among different crash types in Manhattan. Another finding is that the correlation between 

MI and SIF crashes is the highest (0.898) among all three pairs. A possible reason for that 

is the factors contributing to minor and severe crash injuries are similar.    

 

Table 6  

Estimates of the conditional standard deviation (SD) of the spatial effects of each 

individual crash type and the within-site conditional correlation of the spatial effects of 

each pair of crash types. 
 Mean 95% BCI 

Conditional standard deviation (SD) 

PDO: 
11S  0.858 (0.748, 0.975) 

MI: 22S  0.921 (0.834, 1.016) 

SIF: 33S  0.998 (0.859, 1.148) 

Within-site conditional correlation 

PDO vs MI: 2

12 11 22/ ( )S S S    0.805 (0.726, 0.873) 

PDO vs SIF: 2

13 11 33/ ( )S S S    0.715 (0.596, 0.817) 

MI vs SIF: 2

23 22 33/ ( )S S S    0.898 (0.843, 0.938) 

 

 
7. Summary and conclusions 

 

In this study, Manhattan, which is the most densely populated urban area of New York 

City, was used as the study area. Crash, transportation, land use and demo-economic data 

of Manhattan were collected for this study. Poisson-Gamma (PG) model, univariate 

conditional autoregressive (UCAR) model, and multivariate conditional autoregressive 

(MVCAR) model were developed and compared. The results of DIC suggest that the 

proposed MVCAR model outperforms the others by incorporating multivariate CAR 

effects. The proposed MVCAR model can improve the accuracy of coefficient estimates 



19 

 

by properly accounting for the spatial dependence of crash observations. Results also show 

that vehicle miles traveled (VMT), truck ratio, road density, avenue length, street length, 

intersection number, ratio of commercial area, ratio of mixed land use area, population, 

population under 14, and ratio of commuters by walking have positive impact on crash 

occurrence; whereas ratio of residential area, ratio of park area, median income, and ratio 

of commuters by public transit are negatively associated with crash occurrence. By 

conducting Moran’s I tests, residuals of the MVCAR model were found to be distributed 

randomly over space, which indicates that the MVCAR model can account for the 

multivariate spatial autocorrelation among different crash types. It is also found that 

unobserved heterogeneity was mostly attributed to spatial factors rather than non-spatial 

ones and there was a strong shared geographical pattern of risk among different crash types. 

 

Modeling crash counts by injury severity using the MVCAR model in this study can help 

identify high-risk locations with consideration of injury severity. The MVCAR model has 

been used in a few previous studies but has not gain wide attention. Regarding the necessity 

to analyze and to model the occurrence of crashes by types (e.g., injury severity, time of 

day, travel mode, etc.) and the fact that crash data is generally spatially correlated, the 

MVCAR model can be helpful to avoid biased inferences and to gain insights into road 

safety management. This study also contributes to the literature by explicitly examining 

the univariate and multivariate spatial autocorrelation using Moran’s I statistics. 

Approaches are presented to investigate how the unobserved heterogeneity is attributed to 

spatial or non-spatial factors and how strong the shared geographical pattern of risk among 

different crash types is. In addition, a detailed procedure of estimating Bayesian models is 

presented, including approaches to diagnose autocorrelation and convergence of MCMC. 

 

One limitation of this study is that the boarders of census tracts coincide with major 

arterials and crashes occurring on those arterials are arbitrarily assigned to adjacent census 

tracts and this would lead to biased inferences. For future study, special consideration will 

be given to crashes on the boarders. Furthermore, all the Bayesian models developed in 

this study are Poisson-based. It is a future direction worth pursuing to compare Poisson-

based models with other approaches such as Tobit models (Anastasopoulos et al. 2012a, 

Anastasopoulos et al. 2012b) that accommodate continuous response variable like crash 

rate and could potentially capture more risk factors and improve the mixing of MCMC 

chains.  
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